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Abstract

Despite their wide adoption, the biases and un-
intended behaviors of language models remain
poorly understood. In this paper, we identify
and characterize a phenomenon never discussed
before, which we call semantic leakage, where
models leak irrelevant information from the
prompt into the generation in unexpected ways.
We propose an evaluation setting to detect se-
mantic leakage both by humans and automati-
cally, curate a diverse test suite for diagnosing
this behavior, and measure significant semantic
leakage in 13 flagship models. We also show
that models exhibit semantic leakage in lan-
guages besides English and across different set-
tings and generation scenarios. This discovery
highlights yet another type of bias in language
models that affects their generation patterns
and behaviour.

1 Introduction

As language models (LMs) become more preva-
lent (Touvron et al., 2023; Anil et al., 2023; Achiam
et al., 2023; Scao et al., 2022), we are steadily learn-
ing more about their peculiarities and the unique
and often unexpected properties of their behavior.
Phenomena ranging from hallucinations (Ji et al.,
2023) to sycophancy (Sharma et al., 2024) and
many types of biases (Navigli et al., 2023) have
been revealed in these models’ outputs. Each such
discovery leads to a cycle of in-depth study and
development of new methods to mitigate these be-
haviors as much as possible.

We identify a phenomenon in language models
never discussed before, which we term semantic
leakage — these models can generate text with
strong semantic relationships to unrelated words in
the prompts. For example, when given the prompt

“He likes yellow. He works as a”, GPT4o1 generates
the output “school bus driver” (Figure 1). Here we

1https://platform.openai.com/docs/models/
gpt-4o

Examples of semantic leakage

Prompt: He likes yellow. He works as a
GPT4o: school bus driver

Prompt: He likes ants. His favorite food is
GPT4o: ant-covered chocolate, a unique
delicacy that combines the crunch of ants
with the sweetness of chocolate

Prompt: It was her turn to speak and she
got cold feet. A day later she stayed at home
because she got hurt in her
GPT4o: ankle

Prompt: He is a doctor. His favorite song is
GPT4o: ’Stayin’ Alive’ by the Bee Gees

Figure 1: Examples of semantic leakage in GPT4o. The
leaking concept is underlined.

say that the word yellow has leaked into the gener-
ation in a way that unintentionally influences the
generated occupation. Figure 1 shows three addi-
tional examples of prompt-generation pairs (using
GPT4o). In each example, the leakage from the
semantic meaning of the underlined word in the
prompt is apparent in the generation.

We define semantic leakage into a generation
as an undue influence of semantic features from
words in the prompt on the generation, “undue” in
the sense that the semantic relatedness between the
prompt and the generation is stronger than would
be expected in natural distributions. Often semantic
leaks read as forced, overwrought, even nonsensi-
cal generations, of the kind found in children’s
stories.

In this paper, we introduce an evaluation met-
ric for measuring semantic leakage. We examine

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o


semantic leakage with 109 examples of different
semantic categories (animals, food, music, etc.)
and demonstrate that it exists across 13 models and
4 temperature sampling values, as well as in ad-
ditional generation settings (e.g., open-ended gen-
eration and multilingual settings). Our analysis
shows that finetuned/instruction-tuned models tend
to leak more, and that semantic leakage also hap-
pens across languages.

Semantic leakage is closely related to different
types of biases models exhibit, ranging from gen-
der, racial and cultural biases (Bolukbasi et al.,
2016; Caliskan et al., 2017; Gonen and Gold-
berg, 2019; Nadeem et al., 2021) to cognitive and
psychological biases (Jones and Steinhardt, 2022;
Macmillan-Scott and Musolesi, 2024; Hagendorff
et al., 2023), in which associations between differ-
ent concepts are learned by the model during train-
ing and exposed as bias during generation (Maud-
slay et al., 2019; Gonen and Webster, 2020; Schick
et al., 2021). While still not fully understood, we
suspect that much documented and discussed gen-
der bias and other types of previously documented
biases (Navigli et al., 2023) are instances of asso-
ciations that get learned and influence in a broader
way, which is partially reflected as semantic leak-
age. Specifically, here we are looking at larger
semantic classes (i.e., compared to gender or race),
and we seek to quantify and study learned associa-
tions and their effect on model generation settings.

Given the nature of models in learning associ-
ations during training, whether semantic leakage
is surprising or not is a point of contention. In ad-
dition, the implications of this behaviour depend
on the user and application context, and are not
necessarily either good or bad. At the same time,
we strongly believe that it is an interesting and
important behavior to investigate as it may be a
broad enough umbrella to encompass many other
associations that are studied as more specific cases.
Studying the broader family may be easier and
more beneficial, as the more general class may in-
clude cases more resistant to mitigation strategies
and more prevalent in model outputs.

Our contributions in this paper can be summa-
rized as follows: (1) we identify and define the phe-
nomenon of semantic leakage in language model
generation (Section 2); (2) we build a test suite
for detecting semantic leakage in language mod-
els (Section 2); (3) we evaluate 13 models with
varying sizes using this test suite, uncovering con-

sistent cross-model trends, and validate this auto-
matic evaluation with human judgments (Section 4
and 5); (4) we show that models also exhibit seman-
tic leakage in languages beyond English (Chinese
and Hebrew) as well as in crosslingual settings
(Section 6) and in more open-ended generation
(Section 7). By characterizing semantic leakage,
we demonstrate yet another property language mod-
els exhibit in text generation, and highlight how
choices in prompt construction can inadvertently
affect model output.

2 Semantic Leakage

2.1 Overview and Definitions

When producing text, language models can draw
on semantic associations with words from the input,
or prompt, that are not required or expected, and
sometimes even violate rules of logic or common
sense. For example, given the prompt “He likes
koalas. His favorite food is”2 GPT4o generates the
output “eucalyptus leaves”. Here, we say that the
semantic association with “koalas” and the foods
they eat “leaks” into the generation, despite the
fact that a person’s favorite food and their opinion
on koalas are unrelated in the real world. We call
this phenomenon semantic leakage. While this
behaviour might be seen as subjective, the cases
we consider in this paper are, we believe, beyond
debate.

A related phenomenon of conceptual leakage has
been reported in image generation (Rassin et al.,
2022). There, the authors find that visual properties
of one object in the image leak into other objects
in the image (for example, the prompt “a zebra
and a street” generates an image of a zebra next to
a zebra crossing), which resembles examples we
show as well (e.g., yellow leaking into the occupa-
tion through “school bus driver”, see first example
in Figure 1).

Semantic leakage in text generation can also
manifest in more subtle ways: for the prompt “He
likes green. He works as a”, GPT4o generates

“landscape architect” as a response. In other cases,
the model may leak semantics that are not even
used in the prompt: For example, when prompted
with an idiom, a model can leak the literal semantic
meaning of that phrase (that is not actually being
used): for instance, when prompted with “She gave

2With GPT models, for prompts of sentence completions
we prepend “Complete the sentence:” to the prompt, as we
find that the model performs the task better this way.



him the green light for the new project. A day later
he sent an invitation to everyone by mail, with an
envelope colored”, GPT3.5 generates the response

“bright green to match the theme of the project.” This
is similar to another observation made by Rassin
et al. (2022) where the authors demonstrate that
sense-ambiguous words are hard for the model to
isolate, and the generated images often exhibit the
unintended sense together with the intended one.

2.2 Operationalizing the Measurement of
Semantic Leakage

We define the different elements of semantic leak-
age as follows. A prompt is the input text that
primes the model to output a corresponding gener-
ation. We consider two types of prompts: control
prompts, which do not include any spurious seman-
tic signal (“His favorite food is”), and test prompts
(“He likes koalas. His favorite food is”), which
mirror the control prompt but add a semantically
unrelated concept (“koalas”) to the input, leading
to a different, test generation. While it is known
that changing the surface form of the prompt often
alters model output (Gonen et al., 2023; Sclar et al.,
2024), these new test generations are frequently
much more semantically similar to the concept in-
troduced in the prompt than the control generations
(Section 4).

We evaluate the prevalence of semantic leakage
in a given model by comparing the similarity of
the generations produced by the control and test
prompts to the concept under consideration. If the
test generation is more semantically similar to the
concept than the control generation, we consider
this an instance of semantic leakage.

To quantify the prevalence of semantic leakage,
we design an evaluation setting that is motivated
by the definition of semantic leakage, as having
stronger connections of the concept to the test gen-
eration. The goal is to compare the similarity of
the generations produced by the control and test
prompts to the concept, while making sure no other
factors are taken into consideration. We use the
following similarities to then derive the evaluation
metric detailed below:

simcontrol = similarity(concept, control)

simtest = similarity(concept, test)

Evaluation Metric From the above formulation,
we derive the “Semantic Leakage Rate” metric

(Leak-Rate), the percentage of instances in which
the concept is semantically closer to the test gener-
ation than the control generation. We score Leak-
Rate by averaging the following function across all
evaluation instances, and converting percentages to
get a range of 0–100%:

Leak-Rate(test, control) =


1 if simtest > simcontrol

0 if simtest < simcontrol

0.5 if simtest = simcontrol

(1)

This evaluation setting can be implemented as
automatic evaluation (Section 4) or as human eval-
uation (Section 5), with no required adjustments.
For automatic evaluation, we embed the texts (con-
cept, control generation, test generation) with an
embedding method (see Section 3.3) and compute
similarity measures; for human evaluation, we ask
annotators to judge which of the two pairs is more
semantically similar.

When the model does not exhibit semantic leak-
age at all, we expect a Leak-Rate of 50%, i.e., an
even split between test vs. control having higher
similarity, for those that show a difference. We
expect Leak-Rate higher than 50% when the model
exhibits semantic leakage. The Leak-Rate scores
are comparable across models for a given embed-
ding method and test set of prompt pairs.

2.3 Building a Test Suite
We build a test set of prompts by considering cat-
egories and concepts with clear semantic associ-
ations. We also focus on categories and prompt
settings that are likely to allow uncontroversial
evaluation (by priming for short model outputs),
though later we also consider open-ended genera-
tion (Section 7). In addition, a subset of the test
suite considers idioms, which have both literal and
figurative interpretations, as the concepts that are
included in the test prompts.

We manually create 109 prompts with concepts
from categories such as colors, food, animals,
songs, occupations and more. A few examples are
listed in Table 1.3 Each prompt in our test suite is
matched with a control prompt as explained above.

3 Experimental Setup

We present the experimental setup for automati-
cally evaluating semantic leakage in a wide range

3The full list can be found at https://gonenhila.
github.io/files/semantic_leakage_prompts.txt
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Model Prompt and generation

LLAMA2 John likes dolphins. John’s father is working as a marine biologist
7B-CHAT John likes tigers. John’s father is working as a tiger in a zoo

LLAMA2 He likes pandas. His favorite food is bamboo
13B-CHAT He likes mice. His favorite food is cheese

LLAMA2 His name is Cedar. His friend lives in a treehouse
70B-CHAT His name is Ocean. His friend lives in a houseboat

LLAMA3 He watched a polka concert. For dinner he had a plate of pierogies and a side of sauerkraut
8B-INS He watched a flamenco concert. For dinner he had a delicious paella

LLAMA3 Mercedes has a friend. The friend’s hobby is collecting Mercedes cars because he loves the Mercedes
brand

70B-INS Forest has a friend. The friend’s hobby is gardening, to her home in a way which makes it a forest

GPT3.5 He is a firefighter. His favorite song is “Ring of Fire” by Johnny Cash
He is a postman. His favorite song is “Signed, Sealed, Delivered” by Stevie Wonder

GPT4

The woman was as cold as ice. Afterwards, I went to the library and read about the fascinating science
of cryogenics, which explores the process of freezing and preserving organic matter at extremely low
temperatures
It was her turn to speak and she got cold feet. A day later she stayed at home because she got hurt in
her ankle during a morning jog

GPT4O
She is a music lover. Her nephew was accused of stealing her prized vinyl collection
She is a cinema lover. Her nephew was accused of pirating movies

Table 1: Examples of instances that lead to semantic leakage, taken from different models. The prompt is in green
(italic) and the generation is in blue.

of models and model sizes.

3.1 Experimental Details

We evaluate semantic leakage in multiple language
models from two families: GPT models4 and
LLAMA models (Touvron et al., 2023),5 as detailed
below. For all models, we explore several tempera-
ture values (0, 0.5, 1, 1.5), and we run each prompt
10 times to get variation in the generations, when
possible.

Before evaluation, for cases where the prompt is
repeated in the model generation, we remove the
repeated prompt. We also truncate the generations
after the first period since the main piece of infor-
mation is generated before it, and because LLAMA

models tend to generate unrelated sentences or
phrases that might interfere with the evaluation.

3.2 Models

We experiment with 13 models of two different
state-of-the-art model families to explore semantic
leakage in a diverse inventory of models.

GPT models We use OpenAI’s API6 and send
requests to GPT models by calling GPT3.5,

4https://platform.openai.com/docs/models
5https://ai.meta.com/blog/meta-llama-3/
6https://platform.openai.com/docs/models

GPT4 (Achiam et al., 2023), and GPT4o.7 We add
the prefix “Complete the sentence:’’ to prompts
for GPT models, as we observe they lead to higher
quality generations.

LLAMA models We run all LLAMA variations
using Huggingface (Wolf et al., 2019): Llama2: 7B,
7B-chat, 13B, 13B-chat, 70B, 70B-chat. Llama3:
8B, 8B-Instruct, 70B, 70B-Instruct. We cap the
generation in LLAMA models at 100 tokens (300
tokens for open generation, Section 7).

3.3 Embedding Methods
For automatic evaluation, we aim to use basic em-
bedding methods that are able to detect and re-
flect semantic similarities, and are ideally detached
from the models we evaluate to avoid confound-
ing factors. We consider the following embedding
methods. BERT-SCORE directly provides a simi-
larity score, and for the other two we apply cosine-
similarity.

BERT-SCORE (BS) BERT-SCORE (Zhang et al.,
2020) is an automatic evaluation metric for text gen-
eration, that computes a similarity score for each
token in the candidate sentence with each token in
the reference sentence, where token similarity is

7gpt-3.5-turbo-0125, gpt-4-turbo-2024-04-09 and
gpt-4o-2024-05-13, respectively.

https://platform.openai.com/docs/models
https://ai.meta.com/blog/meta-llama-3/
https://platform.openai.com/docs/models


computed using contextual embeddings. We use
the distilbert-base-uncased model.8

For the multilingual experiments, where
we expect generations in non-English lan-
guages (Section 6), we use the respective
models: bert-base-chinese for Chinese, and
bert-base-multilingual-cased for Hebrew
(for crosslingual settings we still use the English
model as the generations there are mainly in En-
glish).

SENTENCEBERT EMBEDDINGS (SB) SEN-
TENCEBERT (Reimers and Gurevych, 2019) is
a modification of BERT (Devlin et al., 2019) that
uses Siamese and triplet network structures to de-
rive semantically meaningful sentence embeddings
that can be compared using cosine-similarity. We
use the huggingface implementation.9

OPENAI EMBEDDINGS (OAI) We use
text-embedding-3-large,10 OpenAI’s best
performing embedding model.11 There is no
information available about the way the model was
trained.

In addition to these metrics, we validate our ex-
periments with a manual evaluation of semantic
leakage on a subset of the models (Section 5). This
also serves as a validation of our automatic metrics.

4 Results

Significant semantic leakage across various use
cases and models. Table 2 depicts the average
leakage for each model, taken over multiple sam-
plings and across temperature values, as detailed in
Section 3.1. We see that semantic leakage is exhib-
ited in all model variations, and is detected by all
embedding models we use. Leak-Rate values are
all well above the 50% random mark, validating the
semantic relatedness of the prompt and the test gen-
eration. All the results are statistically significant12

with p < 10−100.
Table 1 lists a few examples of semantic leakage

from the different models, showcasing leakage in
diverse use cases and styles and with respect to
a variety of leaking concepts. In many cases we

8https://huggingface.co/spaces/evaluate-metric/bertscore
9https://huggingface.co/efederici/sentence-bert-base

10https://platform.openai.com/docs/guides/
embeddings/embedding-models

11https://openai.com/index/
new-embedding-models-and-api-updates/

12Using a t-test for the lists of the Leak-Rate values to test
that their mean is significantly greater than 50%.

Leak-Rate
Model BS SB OAI
GPT3.5 74.3 68.6 85.5
GPT4 70.8 61.2 84.4
GPT4o 76.9 70.4 85.0

2-7b 66.8 64.9 72.8
2-7b-chat 72.6 71.7 77.8
2-13b 70.4 65.1 73.6
2-13b-chat 71.5 65.2 78.4
2-70b 71.9 63.2 75.9
2-70b-chat 75.4 66.8 78.2

3-8b 69.6 65.9 75.5
3-8b-ins 78.1 68.8 81.5
3-70b 71.6 68.1 75.2
3-70b-ins 76.3 71.2 77.3

Table 2: Semantic Leak-Rate averaged across 10 sam-
ples for each of 4 temperature values. No semantic leak-
age would correspond to a Leak-Rate of 50% (random
guessing), with higher values indicating more leakage.
The bottom sections present the LLAMA2 and LLAMA3
models, respectively. The model showing the most leak-
age in each <model family, metric> setting is bolded.

explore, the generations do not make sense in the
context, or are very limited and focused on the
leaking concept from the prompt.

Leakage is more pronounced in certain model
variations. The results in Table 2 show that cer-
tain model variations tend to exhibit more semantic
leakage than their counterparts. We now take a
closer look and analyze the differences within the
different model families.

GPT models Figure 2 shows the leakage esti-
mation in the three different GPT models across
different temperature values. GPT4o consistently
leaks more than GPT4 and GPT3.5.13

LLAMA models For LLAMA models we consis-
tently see that the instruction-tuned models (CHAT

version in LLAMA2 and INSTRUCT version in
LLAMA3) leak more than their pretrained-only
counterparts. A detailed comparison is presented
in Figure 3 where we plot the average leakage of
each model (averaged across temperature values),
as measured with Leak-Rate with BERT-score em-

13This is not true when using OpenAI embedding model,
which might be a result of confounding factors as these embed-
dings are likely derived from specific models, but information
about how the embedding models are constructed is not pub-
licly available.

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
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Figure 2: Semantic leakage in GPT models using differ-
ent temperature values (measured with Leak-Rate using
BERT-score).

beddings. All the differences are statistically sig-
nificant14 with p < 0.002 except for Llama-2-13b.
We see similar trends with all other metrics as well.

2-7
b

2-1
3b

2-7
0b 3-8

b
3-7

0b

Model

0

20

40

60

80

Le
ak

-R
at

e 
(B

ER
T-

sc
or

e)

plain
chat/instruct

Figure 3: Semantic leakage in LLAMA models, averaged
across temperature values (measured with Leak-Rate
using BERT-score).

Leakage across different temperatures. We
now inspect the way sampling temperature affects
semantic leakage. For the GPT models, we see no
clear trends (Figure 2).15

For LLAMA models, we see that greedy sam-
pling (t = 0) leads to the highest semantic leakage

14Using a t-test for the lists of the Leak-Rate values showing
that the mean in finetuned models is significantly higher than
that of the plain version.

15We are not confident that the temperature setting behaves
in the normally defined way when using the GPT API. E.g., we
noticed that a temperature setting of zero (which should mean
greedy, deterministic decoding) still gives different outputs on
repeated calls to the API.

measures (see Figure 4). Generally, lower tempera-
ture values lead to more leakage—this is consistent
for most models and across all metrics.
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Figure 4: Semantic leakage in LLAMA models using
different temperature values (measured with Leak-Rate
using BERT-score).

5 Human Evaluation

We now perform a manual evaluation of semantic
leakage, which will also validate our automatic
metrics and experiments.

5.1 Human Evaluation Setup
Human evaluation is based on the same setting as
automatic evaluation, described in Section 2.2.

We recruit two native English speakers who are
not involved with the project. These annotators
are not provided with the objective of this exper-
iment, but instead are given the following anno-
tation guidelines: Consider the word or phrase
X. Which of the following texts (A or B) is more
semantically related to X? (A/B/Neither). We
map the annotator’s choice of (A/B/Neither) to
ℓ = {test, control, neither} and then score Leak-
Rate as done in Eq. 1.

Using these guidelines, the annotators are asked
to label 109 test-control generation pairs from each
model (ordered randomly). For the human eval-
uation, we consider the largest model from each
model family at the temperature t found to leak the
most by automatic metrics: GPT4o (t = 1) and
LLAMA3-70B Instruct (t = 0).

5.2 Analysis
Figure 5 compares the semantic leakage detected
by the human evaluation for GPT4o against the au-
tomatic metric and presents the Semantic Leakage



Rate on the right of each row. The values in the
human evaluation row are percentages for each cat-
egory: test is more similar to the concept, control
is more similar to the concept, or neither.

We expect humans to have higher tolerance
for similar scores, i.e., more cases falling under
simtest = simcontrol in the human evaluation than in
the automatic evaluation, where it occurs almost
solely when the test and control generations are
the same (see Equation 1). To visually account for
this difference we plot the automatic metric results
by using colored gradient to depict the difference
in similarity values simtest − simcontrol, with posi-
tive values (shades of blue on the right) implying
semantic leakage. The results account for all ten
generations sampled from each model.

We find similar trends on LLAMA3-70B Instruct
with an average human-annotated Leak-Rate of
66.7 and automatic evaluation of Leak-Rate that
range from 71.2 to 77.3 across the different embed-
ding types.

We also calculate Kendall’s τ on the human an-
notations. We find high interannotator agreement
between the human annotators (τ = 0.68), indi-
cating that humans generally agree on the cases
that constitute semantic leakage. We also compute
Kendall’s τ on the human evaluation vs. similarity
differences calculated using BERTScore embed-
dings to evaluate how well these methods corre-
late,16 and get a moderate correlation of τ = 0.39
when averaged between the two annotators.17
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Human

BS

SB

OAI

71.8

78.6

70.5

84.9Control
Same
Test

0.1 0.0 0.1
Similarity difference (in automatic metrics)

Figure 5: Human detection of semantic leakage com-
pared to automatic methods. Leak-Rate is reported on
the right for each method.

16We introduce a slack variable of ϵ = 0.03 to account for
the different levels of similarity tolerance between humans
and embedding-based similarity.

17While we use all model generations per example when
obtaining label distributions and computing Leak-Rate, to
calculate τ we use the generations shown to the human anno-
tators, as this requires example-level alignments.

6 Multilingual and Crosslingual Semantic
Leakage

In the previous sections we established that seman-
tic leakage is exhibited in various scenarios in En-
glish, across different models and model sizes. We
now inspect semantic leakage in languages outside
of English, as well as in crosslingual settings, by
focusing on Hebrew and Chinese, Hebrew-English
and Chinese-English. As in the previous section,
we consider the largest model from each model
family at the temperature t found to leak the most:
GPT4o (t = 1) and LLAMA3-70B Instruct (t = 0).
Since we found that LLAMA is struggling with
Hebrew, especially with Hebrew generation, we
exclude these results.

6.1 Multilingual Semantic Leakage

We translate all the prompts into Chinese and He-
brew (see examples in Table 3, rows 1, 3) with the
help of native speakers (including the authors). The
translation is mostly straightforward with the ex-
ception of idioms and names. For English idioms
that do not exist in the target language, we write
a new example using an idiom in that language
(together with a matching context and a control
prompt). As for names, in Chinese we choose a
plausible Chinese name with that meaning (e.g.,
小麦, meaning little wheat, for Rye). In Hebrew,
we make an attempt to translate to an existing and
frequent name in Hebrew, or to substitute it with a
name that holds a related meaning (e.g., Lake in-
stead of River). If that is not an option (e.g., Rye),
we come up with a different name that has a clear
semantic field.

6.2 Crosslingual Semantic Leakage

We create mixed prompts that begin with Chi-
nese/Hebrew and end with English (see examples
in Table 3, rows 2, 4). To do that we use the trans-
lations to Chinese and Hebrew, and mix the two
languages: for the first part of the prompt we use
the translation to Chinese/Hebrew, and for the rest
of it we use the original part in English.

Here, for evaluation purposes, we use the En-
glish concepts, since we expect the generation to
be in English. For names or idioms that are used in
Chinese/Hebrew parts of the prompt, we use their
literal translations into English.



Language Prompt Generation

Heb הוא עליו האהוב האוכל קואלה. דובי אוהב הוא אקליפטוס

Heb-En His favorite food is קואלה. דובי אוהב הוא eucalyptus leaves

Zh 他喜欢考拉。他最喜欢吃 桉树叶

Zh-En 他喜欢考拉。 His favorite food is eucalyptus leaves

Table 3: Example prompts and generations in Hebrew, Hebrew-English, Chinese and Chinese-English, by this order.
All are translations of the prompt: “He likes koalas. His favorite food is”, and the Hebrew/Chinese generations can
be translated to “eucalyptus”/“eucalyptus leaves”, respectively.

6.3 Results
Figure 6 shows the human evaluation results for
the multilingual and crosslingual experiments (with
GPT4o). We can see significant semantic leakage
in multilingual and crosslingual settings, with Leak-
Rate values that range from 70.6 to 78.4 for the 4
different settings, similar to the Leak-Rate values
we got for English.18

The generation quality with the LLAMA model
is generally much lower, and we get Leak-Rates
of 66.5 and 61.5 for Chinese and Chinese-English,
respectively, according to human annotation. As
noted above, the quality of generation in Hebrew
and Hebrew-English did not allow for evaluation
of semantic leakage.
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Figure 6: Human detection of semantic leakage in mul-
tilingual and crosslingual settings.

Table 4 shows the automatic evaluation of the
multilingual and crosslingual experiments. The re-
sults for the multilingual settings are not as reliable
as in the English setting since we cannot determine
the quality of the underlying embedding methods
for Hebrew and Chinese.19 In the crosslingual set-
ting we mainly compare English generations with

18In 6 examples of the crosslingual prompts (Zh-En), the
generations are just translations because of the way the prompt
is designed - we annotate those cases as “neutral”.

19To the best of our knowledge, sentenceBERT is only using
the BERT version that was trained (predominantly) on English.
This explains why sentenceBERT detects higher leakage for
the crosslingual settings (compared to Chinese or Hebrew
only), where the evaluation is done in English.

English concepts, thus the results there are more
reliable.

Leak-Rate
Model Language BS SB OAI

GPT4o

Heb 60.6 53.5 67.2
Heb-En 62.1 58.2 74.9
Zh 67.6 48.9 80.8
Zh-En 61.6 60.5 71.3

3-70b-ins
Zh 73.4 54.1 82.8
Zh-En 79.4 81.2 85.6

Table 4: Semantic leakage scores for multilingual and
crosslingual setting, averaged across 10 samplings and
measured by Leak-Rate.

7 Open-Ended Generation

We also examine semantic leakage in more open-
ended scenarios encouraging the model to generate
multiple sentences or paragraphs, rather than mul-
tiple words to a sentence. It is less clear what the
semantic leakage will look like in this setting, as it
can manifested in more ways within the longer out-
put; we therefore rely on more qualitative analysis
in addition to the automatic metrics. This section
focuses on generations from GPT4o with tempera-
ture 1, as this model (with this temperature setting)
was found to leak the most in previous experiments
(Section 4).

Stories A popular setting for open-ended text
generation is storytelling: we ask the model to
write a story about a child, with the child’s name
being the concept we expect to leak. Figure 7 gives
the stories that GPT4o generates when prompted
to create stories about children named Coral and
Melody. These generated stories contain many



words and elements directly related to the seman-
tics of each name, and the narrative of each story
is tailored to those meanings. When measuring
semantic leakage in this setting automatically for
23 different names,20 we get Leak-Rates of 78.7,
60.9 and 76.1 with BS, SB and OAI embeddings
respectively, suggesting similar rates of leakage to
the other examples.

Recipes We also consider open-ended recipe gen-
eration. In Figure 8, we present GPT4o’s genera-
tions when asked to suggest a recipe for use with
a blue pan or a white pan, where we consider each
color to be the potentially leaking concept. The
model suggests to make blueberry pancakes and
chicken alfredo, respectively, with the foods match-
ing the color of the pan. When prompted with a red
pan, ingredients like peppers, tomatoes and paprika
are far more frequent, same as with asparagus in
the case of a green pan and lemon with a yellow
pan.

We experiment with 5 different colors (10 sam-
plings each) that are likely to be related to types
of food.21 Automatic evaluation in this setting is
more challenging since the concept might appear
in the generation in a leaky way (“red pepper”)
or just as part of the answer, with no attributed
leakage (“red pan”) and these two cases are diffi-
cult to differentiate automatically. We decide to
remove all occurrences of “<color> pan” from the
generations when using automatic metrics, and get
Leak-Rates of 74.0, 58.0 and 74.0 with BS, SB and
OAI embeddings, respectively, again suggesting
semantic leakage in this setting as well.

8 Related Work

Rassin et al. (2022) show conceptual leakage in im-
age generation: they report that DALLE-2 (Ramesh
et al., 2022), a text-to-image model by OpenAI,
exhibits a related type of leakage to the one we
describe in this work. Furthermore, they find that
sense-ambiguous words are hard for the model to
isolate—similar to our observation that idioms in
the prompt can leak the literal meaning into the
generation. In follow-up work (Rassin et al., 2024),
the authors try to mitigate this issue by encouraging
the cross-attention maps to agree with the linguistic
binding reflected by the prompt syntax. Leakage of

20We remove any instance of the name from the generation,
even when that instance is used as a common noun rather than
the name of the child.

21Blue, green, red, white, and yellow.

Semantic leakage in story generation

Prompt: Tell me a short story about a child
named Coral.
Model: Sure, here is a short story about a
child named Coral: In the bustling coastal
town of Seaview, ... and the waves danced
upon the shore, ... Coral spent most of her
days exploring the wonders of the seaside.
... She grabbed her seashell-collecting
basket and marched down to the beach, ...
Along the way, she encountered friendly
crabs, playful dolphins ... telling stories of
the ocean’s many secrets. ... From that day
on, Coral became known as the child who
brought the ocean’s magic to the town. She
shared the shells, ... the mysteries of the sea
...

Prompt: Tell me a short story about a child
named Melody.
Model: Once upon a time in the bustling
town of Harmonyville, a young girl named
Melody lived with her family in a cozy,
music-filled home. Melody ... talent for
playing the violin. ... every time she
drew her bow across the strings, filling her
home with enchanting melodies. ... often
brought her violin with her. ... sorrow-
ful tune ... Melody followed the sound
... bird sang its heart out. ... decided
to play her violin for the bird. ... the
instrument, crafting a tune ... The bird
listened intently, its spirits lifting with every
note. ... as the bird sang, ... her enchanting
performances ... awaited her melody ...
always remembering that the true power of
music ...

Figure 7: Examples of story generations, exhibiting
semantic leakage based on the names in the prompt.

properties in DALLE-2 has also been pointed out
and discussed by Ramesh et al. (2022) and Leivada
et al. (2023).

As models have improved, a related line of re-
search has asked whether they match human behav-
ior, particularly with respect to cognitive biases and
priming. Prior work compares models’ behavior to
documented behavior of humans in psychological



Semantic leakage in recipe generation

Prompt: I want to use my blue pan, give me
a recipe:
Model: Sure! Here’s a recipe for a delicious
Blueberry Pancake that you can prepare
using your blue pan: <recipe>

Prompt: I want to use my white pan, give
me a recipe:
Model: Sure, I’d be happy to help you
with a recipe that makes use of your white
pan! Let’s try a classic Chicken Alfredo.
White pans are often non-stick and ideal for
making creamy dishes like this. Here’s a
simple recipe: <recipe>

Figure 8: Examples of recipe generations, exhibiting
semantic leakage based on the colors in the prompt.

experiments, highlighting some similarities as well
as differences from the way humans perceive and
are affected by information they are given (Jones
and Steinhardt, 2022; Macmillan-Scott and Mu-
solesi, 2024; Hagendorff et al., 2023). A known
psychological phenomenon that is very related to
models’ semantic leakage as we present it here,
is that of priming, and specifically semantic prim-
ing (Meyer and Schvaneveldt, 1971; Neely, 1976;
Tulving et al., 1982; Tulving and Schacter, 1990),
where decisions and reactions about specific words
change according to given semantic stimuli pro-
vided before the target word. We plan to investigate
this relationship further in future work.

9 Conclusion

We identified a phenomenon in generative language
models never discussed before, which we term
semantic leakage: language models are prone to
changing their generation in a way that reflects
unrelated semantic information from the prompt,
leading to peculiar and sometimes unreasonable
outputs. We defined and measured semantic leak-
age in a range of models, and together with human
evaluation show that it is prevalent and consistent
across all models we test. We also found that se-
mantic leakage occurs in many different generation
settings, including multilingual and crosslingual
ones.

This leakage reflects associations learned by the
model, similar to how different types of biases are
learned; therefore, our characterization of seman-
tic leakage broadens the scope we should consider
with respect to potential ramifications of learned as-
sociations. In many cases semantic leakage might
not make a difference but it is a behaviour pattern
that should be understood as its implications are
not yet clear.

The results showing that instruction-tuned mod-
els leak more are of special interest, given that they
are the main model variation currently being used
and are usually the better performing ones. We hy-
pothesize that semantic leakage is more dominant
in these models because the leaking generations
are less generic and seem to provide more infor-
mation/content, which might be a property that is
incentivized under these fine-tuning processes. We
plan to explore this hypothesis more formally in
future work.

Limitations

While our experimental setup spans 13 models
of different types and sizes, and explores differ-
ent sampling temperature values, the scale of the
prompts in our test suite remains limited due to
the difficulty of manually creating prompts that are
likely to leak in a way that we can detect and eval-
uate. This is also often the case when measuring
other language model biases. In addition, though
the results are consistent across all models and lan-
guages we experiment with, the trends might be
different with other models or languages we have
not tested.

Finally, we cannot guarantee that the automatic
evaluations do not include noise: in some cases,
even after our automatic post-processing of the
generations, our automatic metrics might consider
non-leaking instance as leaking (e.g., in cases of
occurrences of the concept in the generation due
to a partial repetition of the prompt). However, the
human evaluation we conduct generally agrees with
the findings we get with the automatic detection,
supporting their reliability.
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